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Bernoulli Trials

Repeated independent trials in which there can be only two outcomes
are called Bernoulli trials in honor of James Bernoulli (1654-1705).

• Bernoulli trials lead to the binomial distribution.

• If a the number of trials is large, then the probability of k suc-
cesses in n trials can be approximated by the Poisson distribution.

• The binomial distribution and the Poisson distribution are closely
approximated by the normal (Gaussian) distribution.

• These three distributions are the foundation of much of the
analysis of physical systems for detection, communication and
storage of information.
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Bernoulli Trials

Consider an experiment E that has two outcomes, say a and b, with

probability p and q = 1 − p, respectively.

Let En be the experiment that consists of n independent repetitions

of E.

The outcomes En are n-sequences with the components a and b.

The outcomes of E2 are {aa}, {ab}, {ba}, {bb}, with probabilities p2,

pq, pq, and q2, respectively.
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Bernoulli Trials

Theorem: The outcomes of En are the 2n sequences of length n.

The number of outcomes of En that contain a exactly k times is
given by the binomial coefficient.

(
n
k

)
= n!

k!(n−k)!.

Proof: Assume that each of the terms in the expansion of (a + b)n

represents one of the possible outcomes of the experiment En.

Multiplying by (a + b) to form (a + b)n+1 produces an expression in
which each term in (a + b)n appears twice–once with a appended
and once with b appended.

If the assumption is true, then this constructs all possible distinct
arrangements of n + 1 terms.

The assumption is clearly true for n = 2.
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Bernoulli Trials

Theorem: The probability that the outcome of an experiment that

consists of n Bernoulli trials has k successes and n − k failures is

given by the binomial distribution

b(n, k, p) =
(n

k

)
pk(1 − p)n−k

where the probability of success on an individual trial is given by p.

The peak value is near k = np, as was established in a homework

problem.

In an experiment with n trials one can expect about np successes

and n(1 − p failures.

Lecture 6 4

Effect of changes in p

A graph of the binomial distribution for n = 30 and p = 0.1, 0.3 and

0.5 is shown below.
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Effect of changes in n

• The mean value of a binomial distribution is np

• The variance of a binomial distribution is np(1 − p),

• The standard deviation is
√

np(1 − p)

• The standard deviation is a measure of the spread of a distribu-

tion about its mean value.

• Both the mean value and the standard deviation increase with

the number of trials, but the mean value increases faster.

• The ratio σ/µ is a measure of the spread relative to the mean

value.

σ

µ
=

√
np(1 − p)

np
=

1√
n

√
1 − p

p
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Effect of changes in n

A graph of the binomial distribution as a function of the fraction
k/n is shown below for n = 30, 100 and 300. The vertical values are
nb(n, k, p), which compensates for the increase in density of points
and gives the plots equal areas.
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Law of Large Numbers

Define Sn to be the number of successes on n trials. Then

P [Sn = k] = b(n, k, p)

We would like to know the behavior of the function in the central
region and on the tails. We can examine the tail on the right with
the ratio (The tail on the left will be symmetric.)

b(n, r, p)

b(n, r − 1, p)
=

(n − r + 1)p

rq
= 1 +

(n + 1)p − r

rq
< 1 − r − np

rq

Example: n = 120, p = 0.01, r = 15. Then r − np = 15 − 12 = 3
while r − (n + 1)p = 15 − 13 = 2. Hence,

1 − r − (n + 1)p

rq
< 1 − r − np

rq
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Law of Large Numbers

The ratio of successive terms is a number that is decreasing. There-

fore, the sum is smaller than the sum over a geometric series, in

which the ratio of terms is a constant. A bound on the probability

P [Sn ≥ r] is therefore given by the geometric sum with ratio ρ if ρ

is the ratio for the first pair of terms.

P [Sn ≥ r] ≤
∞∑

k=0

b(n, r, p)ρk = b(n, r, p)
1

1 − ρ

Substitution of ρ = 1 − r−np
rq now leads to the upper bound

P [Sn ≥ r] ≤ b(n, r, p)
rq

r − np

Lecture 6 9

Law of Large Numbers

We now need to replace b(n, r, p) with an upper bound that is easy

to work with. We do this by noting that all of the terms between

the center, m, and r are greater than b(n, r, p) and that the total of

those terms must be less than 1. The number of such terms is no

more than r−np, so (r−np)b(n, r, p) < 1 so that b(n, r, p) < 1/(r−np).

Putting this into the above equation yields the simple upper bound

P [Sn ≥ r] ≤ b(n, r, p)
rq

r − np

≤
(

1

r − np

) (
rq

r − np

)

≤ rq

(r − np)2
if r > np
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Law of Large Numbers

A similar analysis could be performed on the left tail. However, this

can be avoided by observing that saying that there are at most r

successes is the same as saying there are at least (n − r) failures.

Exchanging n−r for r and p for q on the right side above then yields,

after simplification,

P [Sn ≤ r] ≤ (n − r)p

(np − r)2
if r < np
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Law of Large Numbers

Let us now look at the probability that the number of successes

is much different from np. We can address this by using the above

results. Let r = n(p + ε). Then

P [Sn ≥ n(p + ε)] ≤ n(p + ε)q

(n(p + ε) − np)2
=

n(p + ε)q

(nε)2
→ 0

because the denominator grows as n2 while the numerator grows as

n. In the same way, the probability on the left tail also decreases

with n, so that P [Sn ≤ n(p − ε)] → 0.

Almost all the probability is in the central region, which is of width

nε. Since the location of the center is m = np, the ratio of the width

to the center point is ε/p, which can be as small as one wishes.
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Law of Large Numbers

Theorem: The probability that the ratio Sn/n differs from p by less

than ε in a set of n Bernoulli trials approaches unity as n increases.

P

[∣∣∣∣Sn

n
− p

∣∣∣∣ < ε

]
→ 1

As n increases, the probability that the average number of successes

differs from p by more than ε tends to zero.*

We find application of the law of large numbers in many areas of

science and engineering. One prominent example is in Shannon’s

development of the noisy channel coding theorem.

*For further discussion of the law of large numbers see William Feller, An Intro-

duction to Probability Theory and its Applications, Vol I, page 152..
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